Status of the TRIUMF Annular Chamber for the Tracking and Identification of Charged Particles (TACTIC)

G. Ruprecht, L. Buchmann, P. Walden, D. Gigliotti, M. Pavan,
 P. Amaudruz, J. Pearson, T. Kirchner
 TRIUMF
 A. Laird, S. Fox, B. Fulton
 University of York

Motivation: The ${}^{8}Li(\alpha,n)^{11}B$ reaction

New r-process calculations of nucleosynthesis in neutrino driven winds in supernovae [Terasawa et al., ApJ **562**(2001)470] include **light elements**.

Two **new reaction chains** can change the heavy element synthesis by one order of magnitude. These are:

$$\begin{array}{l} \alpha(\alpha n,\gamma)^9 \text{Be}(n,\gamma)^{10} \text{Be}(\alpha,\gamma)^{14} \text{C} \\ \text{OR} \\ \alpha(t,\gamma)^7 \text{Li}(n,\gamma)^8 \text{Li}(\alpha,n)^{11} \text{B} \end{array} \end{array}$$

$$T_9 = 0.62 \rightarrow Gamow peak: E_{c.m.} = 240 to 580 keV$$

or $E_{lab} = 90 to 220 keV/u$

Lowest energy ISAC/TRIUMF: 120 keV/u

Last ${}^{8}Li(\alpha,n)^{11}B$ measurement using a Multiple Sampling and Tracking Proportional Chamber (MSTPC)

T. Hasimoto, Nuc. Phys. A 764 (2004)330

Figure 1. Schematic illustration of the detector system.

- + Helium as target gas and counter gas
- + Threedimensional tracking plus energy loss
- ⁸Li beam directly into the chamber
- Beam stopped in chamber
- Low beam intensity
- Broad energy spectrum of the beam

Schematic and simplified view of a tracking chamber for nuclear reactions

Cylindrical chamber

New Set-up using a Gas Electon Multiplier and Flash ADCs

Raw data	Information	Resolution	JEM (MOVO
Anode Strip No	z position	5 mm	Oved Out)
Strip segment No	phi	2pi / 3	11111
Drift time	Radius	1 mm	
Charge	Energy loss		

Problems

- 1. How is the GEM working with Helium?
- 2. What is the optimal geometry? Length, diameter vs. pressure, kinematics
- 3. Pulse shapes, signal/noise ratio vs. pressure
- 4. How to suppress beam electrons?

Testchamber

How is the GEM working with Helium?

Alpha tracks: Measured and simulated

Range of ¹¹B from α (⁸Li,¹¹B)n in 90% He 10% CO₂ gas mixture at STP

What is the optimal geometry?

Range of ¹¹B from α (⁸Li,¹¹B)n in 90% He 10% CO₂ gas mixture at STP

What is the optimal geometry?

Pulse shapes, signal/noise ratio vs. pressure

0.012

0.010

0.008

oltage <u><</u>

0.002

0.000

How to suppress beam electrons?

Plotted at 12.32.35 on 15/02/05 with Garfield version 7.10

How to suppress beam electrons?

Plotted at 12.05.25 on 15/02/05 with Garfield version 7.10

 \bigcirc

igodol

-1800 V

-2000 V

Potential - Fieldlines

*) from A. Peisert, F. Sauli: Drift and Diffusion of Electrons in Gases, Fig. 63, CERN, 1984

Schedule

- Spring 2005: Design first prototype
- Summer 2005: Fabrication and assembling
- Late summer 2005: Initial testing

Other reactions

- ⁷Be+p elastic scattering
- ${}^{12}C$ + ${}^{12}C$ scattering

Summary

- TACTIC allows the measurement of low-energetic ejectiles over a wide angle range
- Excellent results for the GEM with Helium
- Good results for lower pressures
- Beam electron suppression possible

Thanks

G. Ruprecht, L. Buchmann, P. Walden, D. Gigliotti, M. Pavan,
P. Amaudruz, J. Pearson, T. Kirchner
TRIUMF
A. Laird, S. Fox, B. Fulton
University of York

We are not alone...

The BoNuS detector

Prototype Construction

- Curved Prototype Test Fit
- GEM HV Connections ULTEM® Frame Parts Drift Region Cathode – Field Cage Electrodes–
- (GEMs and Readout Board are not shown)

